# Definition
The Poisson bracket is defined by:
$
\{f, g\} \equiv \sum_{i} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial g}{\partial q_{i}} \frac{\partial f}{\partial p_{i}}, \quad f, g \in \mathcal{C}(P)
$
where $\mathcal{C}(P)$ is the [[vector space]] of [[Observable (Classical Mechanics)|observables]].
It forms a [[Lie Algebra|Lie bracket]] on $\mathcal{C}(p)$, is antisymmetric, and obeys the [[Jacobi Identity]].
# In Term of the Poisson Structure
Writing $\pmb{\text{d}}F = (\frac{\partial F}{\partial q^i}, \frac{\partial F}{\partial p_i})$, and denoting the [[Poisson Structure|Poisson Form]] by $B$, then we have:
$
\{F,G\} = B(\pmb{\text{d}}F, \pmb{\text{d}}G) = \pmb{\text{d}}F \cdot \mathbb{J} \nabla G
$
here, $\mathbb{J}$ is the [[Symplectic Matrix]] and $\nabla G$ is the *naive gradient* of $G$, i.e., the row vector $\pmb{\text{d}}G$ interpreted as a column vector.
It is straightforward to verify this works. For example, assume that $n = 2$, we end up with:
$
\begin{align}
\begin{pmatrix}
\frac{\partial F}{\partial q^1} \frac{\partial F}{\partial q^2} \frac{\partial F}{\partial p_1} \frac{\partial F}{\partial p_2}
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\frac{\partial G}{\partial q^1}\\ \frac{\partial G}{\partial q^2}\\ \frac{\partial G}{\partial p_1}\\ \frac{\partial G}{\partial p_2}
\end{pmatrix}
&= \left(\frac{\partial F}{\partial q^1}\frac{\partial G}{\partial p_1} - \frac{\partial G}{\partial q^1}\frac{\partial F}{\partial p_1}\right) + \left(\frac{\partial F}{\partial q^2}\frac{\partial G}{\partial p_2} - \frac{\partial G}{\partial q^2}\frac{\partial F}{\partial p_2}\right)\\
&= \{F, G\}
\end{align}
$