# Defintion
The Pauli matrices are given by:
$
\begin{align}
\sigma_1 = \sigma_\mathrm{x} &=
\begin{pmatrix}
0&1\\
1&0
\end{pmatrix} \\
\sigma_2 = \sigma_\mathrm{y} &=
\begin{pmatrix}
0& -i \\
i&0
\end{pmatrix} \\
\sigma_3 = \sigma_\mathrm{z} &=
\begin{pmatrix}
1&0\\
0&-1
\end{pmatrix} \\
\end{align}
$
They are [[Hermitian Operator|Hermitian]] and [[Unitary Operator|unitary]]. Alternative symbols include $\tau$ and $\rho$.
Together with the identity matrix, they form a basis for the real vector space of $2 \times 2$ Hermitian matrices.