# Definition
Consider a state $\ket{\pmb{x}, \sigma}$ where $\pmb{x}$ is the spatial coordinate and $\sigma$ is the spin. The parity or spatial inversion operator $\Pi$ acts on this state as:
$
\begin{align}
\Pi \ket{\pmb{x}, \sigma} = \ket{-\pmb{x}, \sigma}
.\end{align}
$
In $\pmb{k}$ space, $\Pi$ acts on a state $\ket{\pmb{k}, \sigma}$ as:
$
\begin{align}
\Pi \ket{\pmb{k}, \sigma} = \ket{-\pmb{k}, \sigma}
.\end{align}
$
One can easily show that $\Pi$ is an [[Idempotent Operator]], i.e. $\Pi^2 = 1$ and the [[Eigenvalue|eigenvalues]] of $\Pi$ are $\pm 1$. Note that $\Pi$ is also [[Unitary Operator]], i.e. $\Pi^\dagger = \Pi^{-1}$
If we write down a [[Hamiltonian]] as:
$
\begin{align}
H = \sum_{\pmb{k},\sigma,\sigma'} \ket{\pmb{k},\sigma} H_{\sigma\sigma'} \bra{\pmb{k},\sigma'}
.\end{align}
$
Then parity acts as:
$
\begin{align}
\Pi H \Pi^{-1} &= \sum_{\pmb{k},\sigma,\sigma'} \Pi \ket{\pmb{k},\sigma} H(\pmb{k})_{\sigma\sigma'} \bra{\pmb{k},\sigma'}\Pi^\dagger,\\
&= \sum_{\pmb{k},\sigma,\sigma'} \ket{-\pmb{k},\sigma} H(\pmb{k})_{\sigma\sigma'} \bra{-\pmb{k},\sigma'},\\
&= \sum_{\pmb{k},\sigma,\sigma'} \ket{\pmb{k},\sigma} H(-\pmb{k})_{\sigma\sigma'} \bra{\pmb{k},\sigma'}
.\end{align}
$
Thus, if the system satisfies $H(\pmb{k}) = H(-\pmb{k})$ then $\Pi H \Pi^{-1} = H$ and the system preserves inversion symmetry.