# Definition
Consider a system with [[Hamiltonian]] $H$, [[generalized coordinates]] $q^i$ and [[canonical momentum|momenta]] $p_j$. Define $z^I = (p^i, q_j), \, i, j=1\ldots n,\, I=1, \ldots, 2n$. Consider the operation:
$
\pmb{\text{d}}H(z) = \left(\frac{\partial H}{\partial q^i}, \frac{\partial H}{\partial p_i}\right) \mapsto \left(\frac{\partial H}{\partial p^i}, -\frac{\partial H}{\partial q_i}\right) \equiv X_H(z)
$
$X_H(z)$ is a [[vector field]] formed from the differential of $H$, and it is known as the *Hamiltonian vector field*.
It can also be formed from the composition of the linear map $R$
$
R: Z^* \rightarrow Z
$
with the differential of $H$. The matrix representation of $R$ is:
$
[R] = \begin{pmatrix}
\mathbb{0} & \mathbb{1} \\
-\mathbb{1} & \mathbb{0}
\end{pmatrix} \equiv \mathbb{J}
$
where $\mathbb{1}$ is the $n\times n$ identity matrix, $\mathbb{0}$ is the $n \times n$ zero [[matrix]], and $\mathbb{J}$ is the $2n \times 2n$ [[Symplectic Matrix|symplectic matrix]].
Thus, we end up with:
$
X_H(z) = R \cdot \pmb{\text{d}}H(z)
$
or, denoting the [[Components|components]] of $X_H$ by $X^I$, we have:
$
X^I = R^{IJ} \frac{\partial H}{\partial z^J} \iff X_H = \mathbb{J} \nabla H
$
here $\nabla H$ denotes the *naive gradient* of $H$, i.e., the row vector $\pmb{\text{d}} H$ regarded as a column [[vector]].