# Definition
Given a finite-[[dimension|dimensional]] system with [[generalized coordinates]] $q^i$, [[canonical momenta]] $p_i$ and [[Hamiltonian]] $H$, Hamilton's equations take the form:
$
\begin{align}
\dot{q}^i &= \frac{\partial H}{\partial p_i}\\
\dot{p}_i &= -\frac{\partial H}{\partial q^i}
\end{align}
$
# Complex Notation
Let $z = (p, q)$ or, equivalently $z = p + i q$. Then we have:
$
\begin{align}
\dot{z} &= \dot{q} + i \dot{p}\\
\frac{\partial H}{\partial \bar{z}} &\equiv \frac{1}{2} \left(\frac{\partial H}{\partial q} - i \frac{\partial H}{\partial p}\right)\\
\dot{z} &= -2 i \frac{\partial H}{\partial z}
\end{align}
$
# Symplectic Structure
In terms of the [[Symplectic Form]] $\Omega$, its [[Symplectic Structure#Associated Linear Maps|associated linear maps]] $\Omega^\flat, \Omega^\sharp$, as well as the [[Hamiltonian Vector Field]] $X_H(z)$, we can write:
$
\begin{align}
\dot{z} &= X_H(z) = R \cdot \pmb{\text{d}}H(z)\\
&= (\Omega^\flat)^{-1} \pmb{\text{d}}H(z)\\
&= \Omega^\sharp \pmb{\text{d}}H(z)
\end{align}
$
or equivalently
$
\Omega^\flat X_H(z) = \pmb{\text{d}}H(z)
$
or in terms of $\Omega$
$
\Omega(X_H(z), v) = \pmb{\text{d}}H(z) \cdot v
$
for all $z, v \in Z$.