# Definition
Consider a periodic potential (e.g. in a crystal lattice, whether solid-state or photonic)
Bloch's theorem states that the solution to the [[Schrödinger Equation]] can be broken into the form
$
\psi(\pmb{r}) = e^{i \pmb{k}\cdot \pmb{r}} u(\pmb{r})
$
where $u(\pmb{r})$ is a periodic function with the same periodicity as the potential, known as the Bloch function.
# Bloch Hamiltonian
Consider a periodic system with Hamiltonian $\mathcal{H}$:
$
\begin{align}
\mathcal{H} \ket{\psi_{n\pmb{k}}} = E_{n\pmb{k}} \ket{\psi_{n\pmb{k}}}
.\end{align}
$
Using Bloch's Theorem we can write:
$
\begin{align}
\ket{\psi_{n\pmb{k}}} = e^{i \pmb{k}\cdot\pmb{r}} \ket{u_{n\pmb{k}}}
.\end{align}
$
which leads to the reduced [[Schrödinger Equation]] for $\ket{u_{n\pmb{k}}}$:
$
\begin{align}
H(\pmb{k}) \ket{u_{n\pmb{k}}} = E_{n\pmb{k}} \ket{u_{n\pmb{k}}}
,\end{align}
$
where $H(\pmb{k}) = e^{-i \pmb{k}\cdot\pmb{r}} \mathcal{H} e^{+i \pmb{k}\cdot\pmb{r}}$ is the Bloch Hamiltonian.