# Definition
Consider a system that depends on some time-dependent [[vector]] $\pmb{x}(t)$. We assume the [[Hamiltonian]] is $H[\pmb{x}(t)]$, and the Hamiltonian's $n^{\text{th}}$ [[Eigenstate]] is $\ket{n, \pmb{x}(t)}$. The [[Schrödinger Equation]] for this system is:
$
\begin{align}
H[\pmb{x}(t)] \ket{n, \pmb{x}(t)} = E_n[\pmb{x}(t)] \ket{n, \pmb{x}(t)}
.\end{align}
$
We assume $\pmb{x}(t=0) = \pmb{x}_0$ and that $\pmb{x}(t)$ changes [[Adiabatic|adiabatically]] in time. From the time-dependent [[Schrödinger Equation]]:
$
\begin{align}
H[\pmb{x}(t)] \ket{n, t} = i\hbar \frac{\partial}{\partial t} \ket{n, t},
\end{align}
$
we can obtain the [[Eigenstate]] at time $t$:
$
\begin{align}
\ket{n,t} = &\exp\left(\frac{i}{\hbar}\int_0^t \text{d} t' E_n[\pmb{x}(t')]\right)
\exp(-\gamma[\pmb{x}(t)]) \ket{n, \pmb{R}(t)} ,
\end{align}
$
where
$
\begin{align}
\gamma[\pmb{x}(t)] \equiv \int_0^t \text{d} t'\left(i \pmb{\dot{x}}(t') \cdot \bra{n, \pmb{x}(t')} \nabla_{\pmb{x}} \ket{n, \pmb{x}(t')}\right).
\end{align}
$
The phase of the first term in the equation for $\ket{n, t}$ is the trivial dynamical phase, and $\gamma$ is known as the nontrivial geometric phase, Berry phase or Panchanatram phase.
Now assume that the [[vector]] $\pmb{x}(t)$ traces a closed [[Contour]] $C$ from $t = 0$ to $t=T$, i.e. $\pmb{x}(t=0) = \pmb{x}(t=T) = \pmb{x}_0$. We label the area enclosed by the contour $S$. Then we can simplify $\gamma$ as follows:
$
\begin{align}
\gamma[C] &\equiv \int_0^T \text{d} t\left(i \pmb{\dot{x}}(t) \cdot \bra{n, \pmb{x}(t)} \nabla_{\pmb{x}} \ket{n, \pmb{x}(t)}\right), \\
&= \oint_C \text{d} \pmb{x} \cdot i \bra{n, \pmb{x}(t)} \nabla_{\pmb{x}} \ket{n, \pmb{x}(t)},\\
&\equiv \oint_C \text{d} \pmb{x} \cdot \pmb{A}_n(\pmb{x}),\\
&\equiv \int_S \text{d} \pmb{S} \cdot \pmb{F}_n(\pmb{x}),
\end{align}
$
where in the last equation we used [[Stokes' theorem]]. Here we have defined the [[Berry Connection]] $\pmb{A}_n(\pmb{x})$ and the [[Berry Curvature]] $\pmb{\Omega}_n(\pmb{x})$ of the $n^{\text{th}}$ [[Band Structure|band]]:
$
\begin{align}
\pmb{A}_n(\pmb{x}) &\equiv i \bra{n,\pmb{x}} \nabla_{\pmb{x}} \ket{n,\pmb{x}},\\
\pmb{\Omega}_n(\pmb{x}) &\equiv \nabla_{\pmb{x}} \times \pmb{A}_n(\pmb{x})
.\end{align}
$
# Gauge Invariance
Note that the Berry phase is [[gauge]] invariant modulo $2\pi$:
$
\begin{align}
\ket{n, \pmb{x}} &\rightarrow e^{-i \beta(\pmb{x})} \ket{n, \pmb{x}}, \\
\gamma[C] &\rightarrow \gamma[C] + \beta(t=T) - \beta(t=0) \\
\end{align}
$
By continuity of the close [[Contour]] $C$, we have $\beta(T) - \beta(0) = 2 \pi n$ where $n \in \mathbb{Z}$.
# Applications
The Berry phase has many applications in physics, including the study of [[Topological systems]].