# Definition
Consider the [[Berry phase]] of a system that depends on a [[vector]] $\pmb{x}(t)$ that varies [[adiabatic|adiabatically]] in time. Assume the vector evolves cyclically along a closed [[Contour]] $C$, then the [[Berry phase]] is:
$
\begin{align}
\gamma[C] &= i \oint_C \text{d} \pmb{x} \cdot \bra{n, \pmb{x}(t)} \nabla_{\pmb{x}} \ket{n, \pmb{x}(t)},\\
&\equiv \oint_C \text{d} \pmb{x} \cdot \pmb{A}_n(\pmb{x}),\\
&\equiv \int_S \text{d} \pmb{S} \cdot \pmb{\Omega}_n(\pmb{x}),
\end{align}
$
Where we have defined the [[Berry Connection]] and Berry curvature respectively as follows:
$
\begin{align}
\pmb{A}_n(\pmb{x}) &\equiv i \bra{n,\pmb{x}} \nabla_{\pmb{x}} \ket{n,\pmb{x}},\\
\pmb{\Omega}_n(\pmb{x}) &\equiv \nabla_{\pmb{x}} \times \pmb{A}_n(\pmb{x})
.\end{align}
$
More generally, it is the [[skew-symmetric matrix|anti-symmetric]] second-rank [[tensor]] computed from the Berry connection as
$
\begin{align}
\Omega_{n, \mu\nu}(\pmb{x}) &= \frac{\partial}{\partial x^\mu} A_{n, \nu} (\pmb{x}) - \frac{\partial}{\partial x^\nu} A_{n, \mu} (\pmb{x}), \\
\Omega_{n, \mu\nu}(\pmb{x}) &= \epsilon_{\mu\nu\xi} \pmb{\Omega}_{n, \xi}(\pmb{x})
\end{align}
$
# Gauge Invariance
Note that the Berry curvature itself is [[gauge]] invariant, unlike the [[Berry Connection]] which must be integrated along a closed path to become physical. This can be seen easily because
$
\begin{align}
\ket{n, \pmb{x}} &\rightarrow e^{-i \beta(\pmb{x})} \ket{n, \pmb{x}}, \\
\gamma[C] &\rightarrow \gamma[C] + 2 \pi n, \quad n \in \mathbb{Z}, \\
\pmb{A}_n(\pmb{x}) &\rightarrow \pmb{A}_n(\pmb{x}) + \nabla_{\pmb{x}} \beta(\pmb{x}),\\
\pmb{\Omega}_n(\pmb{x}) &\rightarrow \pmb{\Omega}_n(\pmb{x}) + \nabla_{\pmb{x}} \times \nabla_{\pmb{x}} \beta(\pmb{x}) = \pmb{\Omega}_n(\pmb{x})
\end{align}
$
# Properties Under Symmetry
In systems with [[Time-Reversal Operator|time-reversal symmetry]], it is well known that $\pmb{\Omega}(-\pmb{k}) = -\pmb{\Omega}(\pmb{k})$. In systems with [[Inversion Operator|inversion symmetry]], we additionally have $\pmb{\Omega}(-\pmb{k}) = +\pmb{\Omega}(\pmb{k})$. Thus, in systems with both TRS and IS, the Berry Curvature is identically zero $\pmb{\Omega}(\pmb{k}) \equiv 0$.
# Physical Picture
The Berry curvature is a local manifestation of the geometric properties of the [[Wavefunction|wavefunctions]] in the parameter space.