# Definition
Consider the [[Berry phase]] of a system that depends on a [[vector]] $\pmb{x}(t)$ that varies [[adiabatic|adiabatically]] in time. Assume the vector evolves cyclically along a closed [[Contour]] $C$, then the [[Berry phase]] is:
$
\begin{align}
\gamma[C] &= i \oint_C \text{d} \pmb{x} \cdot \bra{n, \pmb{x}(t)} \nabla_{\pmb{x}} \ket{n, \pmb{x}(t)},\\
&\equiv \oint_C \text{d} \pmb{x} \cdot \pmb{A}_n(\pmb{x}),\\
\end{align}
$
Where we have defined the Berry connection as follows:
$
\begin{align}
\pmb{A}_n(\pmb{x}) &\equiv i \bra{n,\pmb{x}} \nabla_{\pmb{x}} \ket{n,\pmb{x}}
\end{align}
$
This assumes the system is non-degenerate, and the Berry connection is *abelian*.
Note that the definition sometimes has a minus sign, and this article uses the minus sign convention when discussing the nonabelian Berry connection. ==I should clean up that section to avoid the minus sign==
# Gauge Invariance
The [[Berry Connection]] must be integrated along a closed path to become physical (giving the [[Berry phase]]. This is in contrast to the [[Berry Curvature]]. This can be seen easily:
$
\begin{align}
\ket{n, \pmb{x}} &\rightarrow e^{-i \beta(\pmb{x})} \ket{n, \pmb{x}}, \\
\gamma[C] &\rightarrow \gamma[C] + 2 \pi n, \quad n \in \mathbb{Z}, \\
\pmb{A}_n(\pmb{x}) &\rightarrow \pmb{A}_n(\pmb{x}) + \nabla_{\pmb{x}} \beta(\pmb{x}),\\
\end{align}
$
# $U(2N)$ Berry Connection Matrix
For a system with $2N$ bands, the *nonabelian* $U(2N)$ Berry connection matrices are defined as:
$
\begin{align}
\pmb{a}_{mn}(\pmb{k}) = - i \bra{u_{m,\pmb{k}}}\nabla_{\pmb{k}}\ket{u_{n,\pmb{k}}}
.\end{align}
$
We can relate $\pmb{a}(-\pmb{k})$ and $\pmb{a}(\pmb{k})$ as follows:
$
\begin{align}
\pmb{a}_{mn}(-\pmb{k}) &= - i \bra{u_{m,-\pmb{k}}}\nabla_{-\pmb{k}}\ket{u_{n,-\pmb{k}}} ,\\
&= i \bra{u_{m,-\pmb{k}}}\nabla_{\pmb{k}}\ket{u_{n,-\pmb{k}}} , \\
&= i \sum_{l,l'} \bra{u_{l',\pmb{k}}}\Theta^\dagger (w_{ml'}^*(\pmb{k}))^\dagger \nabla_{\pmb{k}}
\times(w_{nl}^*(\pmb{k}))\Theta\ket{u_{l,-\pmb{k}}} , \\
&= -i \sum_{l,l'} \bra{u_{l',\pmb{k}}}\Theta w_{l'm}(\pmb{k}) \times
([\nabla_{\pmb{k}} w_{nl}^*(\pmb{k})]\Theta\ket{u_{l,-\pmb{k}}}
+w_{nl}^*(\pmb{k})\nabla_{\pmb{k}}\Theta\ket{u_{l,-\pmb{k}}}) ,\\
%&= -i \sum_{l,l'} \bra{u_{l',\pmb{k}}}\Theta w_{l'm}(\pmb{k}) [\nabla_{\pmb{k}} w_{nl}^*(\pmb{k})]\Theta\ket{u_{l,-\pmb{k}}} + \bra{u_{l',\pmb{k}}}\Theta w_{l'm}(\pmb{k}) w_{nl}^*(\pmb{k})\nabla_{\pmb{k}}\Theta\ket{u_{l,-\pmb{k}}} , \\
\end{align}
$
$
\begin{align}
\pmb{a}_{mn}(-\pmb{k})&= -i \sum_{l,l'} w_{l'm}(\pmb{k}) \bra{u_{l',\pmb{k}}}\Theta^2\ket{u_{l,-\pmb{k}}}
\times \nabla_{\pmb{k}} (w^\dagger(\pmb{k}))_{ln} \\
&+ \bra{u_{l',\pmb{k}}}\Theta w_{l'm}(\pmb{k}) w_{nl}^*(\pmb{k})\nabla_{\pmb{k}}\Theta\ket{u_{l,-\pmb{k}}} ,
%&= i \sum_l w_{lm}(\pmb{k})\nabla_{\pmb{k}} (w^\dagger(\pmb{k}))_{ln}
\end{align}
$
Here, $w_{mn}$ is the [[sewing matrix]].
Thus, we get:
$
\begin{align}
\pmb{a}(-\pmb{k}) = w(\pmb{k}) \pmb{a}^*(\pmb{k}) w^\dagger(\pmb{k}) + i w(\pmb{k}) \nabla_{\pmb{k}} w^\dagger(\pmb{k})
\end{align}
$
Observe that:
$
\begin{align}
\pmb{a}^*_{mn}(\pmb{k}) &= (- i \bra{u_{m,\pmb{k}}}\nabla_{\pmb{k}}\ket{u_{n,\pmb{k}}} )^* \\
%&= i \bra{u_{n,\pmb{k}}}\nabla_{\pmb{k}}\ket{u_{m,\pmb{k}}}\\
&= \pmb{a}_{nm}
.\end{align}
$
And thus:
$
\begin{align}
\text{tr}[\pmb{a^*}(\pmb{k})] = \sum_n \pmb{a^*}_{nn}(\pmb{k}) = \sum_n \pmb{a}_{nn}(\pmb{k}) = \text{tr}[\pmb{a}(\pmb{k})]
.\end{align}
$
Moreover:
$
\begin{align}
\nabla_{\pmb{k}} (w w^\dagger) &= \nabla_{\pmb{k}}(1) = 0 ,\\
&= (\nabla_{\pmb{k}} w) w^\dagger + w (\nabla_{\pmb{k}} w^\dagger) = 0
\end{align}
$
Thus:
$
\begin{align}
w \nabla_{\pmb{k}} w^\dagger = -(\nabla_{\pmb{k}} w) w^\dagger
.\end{align}
$
Taking the [[trace]] of the equation for $\pmb{a}(-\pmb{k})$ above and using the invariance of the trace under [[Unitary Operator|unitary transformations]]:
$
\begin{align}
\text{tr}[\pmb{a}(-\pmb{k})] &=\text{tr}[w(\pmb{k}) \pmb{a}^*(\pmb{k}) w^\dagger(\pmb{k})]\\
&+ i \text{tr}[w(\pmb{k}) \nabla_{\pmb{k}} w^\dagger(\pmb{k})]\nonumber ,\\
&=\text{tr}[\pmb{a}^*(\pmb{k})] + i \text{tr}[w(\pmb{k}) \nabla_{\pmb{k}} w^\dagger(\pmb{k})]
.\end{align}
$
Now replacing $\pmb{k} \to -\pmb{k}$ and using what we have derived so far, the cyclic property of the [[trace]], as well as $\text{tr}[AB] = \text{tr}[(AB)^T] = \text{tr}[B^T A^T] = \text{tr}[A^T B^T]$, we get:
$
\begin{align}
\text{tr}[\pmb{a}(\pmb{k})] &=\text{tr}[\pmb{a}^*(-\pmb{k})] + i \text{tr}[w(-\pmb{k}) \nabla_{-\pmb{k}} w^\dagger(-\pmb{k})] ,\\
&=\text{tr}[\pmb{a}(-\pmb{k})] - i \text{tr}[w^T(\pmb{k}) \nabla_{\pmb{k}} (w^\dagger(\pmb{k}))^T] ,\\
&=\text{tr}[\pmb{a}(-\pmb{k})] - i \text{tr}[w(\pmb{k}) \nabla_{\pmb{k}} (w^\dagger(\pmb{k}))] ,\\
&=\text{tr}[\pmb{a}(-\pmb{k})] + i \text{tr}[(\nabla_{\pmb{k}} w(\pmb{k})) w^\dagger(\pmb{k})] ,\\
&=\text{tr}[\pmb{a}(-\pmb{k})] + i \text{tr}[w^\dagger(\pmb{k}) \nabla_{\pmb{k}} w(\pmb{k})]
.\end{align}
$