# Definition
When the [[determinant]] is thought of as a [[group homomorphism]] between [[Lie Group|Lie groups]]
$
\begin{align}
\det: GL(n, \mathbb{C}) &\rightarrow \mathbb{C}^*\\
A &\mapsto \det(A)
\end{align}
$
then the [[trace]] is the [[Induced Lie Algebra Homomorphism]] (since the $\det$ homomorphism above is [[Continuous Map|continuous]])
$
\begin{align}
\text{tr}: \mathfrak{gl}(n, \mathbb{C}) &\rightarrow \mathbb{C}\\
X &\mapsto \text{tr}(X)
\end{align}
$
# Proof
Starting from the definition of the induce Lie algebra homomorphism:
$
\phi(X) = \frac{d}{dt} \det\left(e^{tX}\right)\bigg|_{t=0}
$
and expanding the determinant as:
$
\det\left(e^{tX}\right) \approx\det(I + tX) = \epsilon(\pmb{I}_1 + t\pmb{X}_1, \pmb{I}_2 + t\pmb{X}_2, \ldots, \pmb{I}_n + t\pmb{X}_n)
$
where the bolded symbols indicated columns of the respective matrices, as per the definition of the determinant, and $\epsilon$ is the [[Levi-Civita tensor]].
Now using the multinealirty of [[tensor|tensors]]:
$
\det(e^{tX}) \approx
\epsilon\left(\pmb{I_{1}}, \ldots, \pmb{I_{n}}\right)+\epsilon\left(t \pmb{X_{1}}, \pmb{I_{2}}, \ldots, \pmb{I_{n}}\right)+\epsilon\left(\pmb{I_{1}}, t \pmb{X_{2}}, \ldots, \pmb{I_{n}}\right)+\ldots+\epsilon\left(\pmb{I_{1}}, \ldots, \pmb{I_{n-1}}, t \pmb{X_{n}}\right)
$
where we have kept only the first order terms in $t$. Then we have:
$
\begin{align}
\det e^{tX} &\approx
\operatorname{det}(I)+\operatorname{det}\left(\begin{array}{ccccc}
t X_{11} & 0 & 0 & \ldots & 0 \\
t X_{21} & 1 & 0 & \ldots & 0 \\
t X_{31} & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \vdots \\
t X_{n 1} & 0 & 0 & \ldots & 1
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccccc}
1 & t X_{12} & 0 & \ldots & 0 \\
0 & t X_{22} & 0 & \ldots & 0 \\
0 & t X_{32} & 1 & \ldots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & t X_{n 2} & 0 & \ldots & 1
\end{array}\right)+\ldots+\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & t X_{1 n} \\
0 & 1 & 0 & \ldots & t X_{2 n} \\
0 & 0 & 1 & \ldots & t X_{3 n} \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \ldots & t X_{n n}
\end{array}\right) .\\
&= 1 + tX_{11} + tX_{22} + \ldots + tX_{nn}\\
&= 1 + t \, \text{tr}(X)
\end{align}
$
So finally we have:
$
\phi(X) = \frac{d}{dt} \left(1 + t\,\text{tr}(X)\right)\bigg|_{t=0} = \text{tr}(X)
$
Thus, we have proved that the [[Induced Lie Algebra Homomorphism]] corresponding to:
$
\begin{align}
\det: GL(n, \mathbb{C}) &\rightarrow \mathbb{C}^*\\
A &\mapsto \det(A)
\end{align}
$
is
$
\begin{align}
\text{tr}: \mathfrak{gl}(n, \mathbb{C}) &\rightarrow \mathbb{C}\\
X &\mapsto \text{tr}(X)
\end{align}
$
# Trace and Determinant Identity
Recall that [[Induced Lie Algebra Homomorphism]] have the identity:
$
\Phi(e^{tX}) = e^{t\phi(X)}
$
applying it to this case with $t=1$ we get:
$
\det({e^{X}}) = e^{\text{tr}(X)}, \quad \forall X \in \mathfrak{gl}(n, \mathbb{C}),
$
the well known identity.