# Definition (Vector Spaces)
Given two [[Symplectic Vector Space|symplectic vector spaces]] $(Z, \Omega)$ and $(Y, \Xi)$, a [[smoothness|smooth]] [[map]] $f:Z \rightarrow Y$ is called a *symplectomorphism*, *canonical transformation*, *symplectic transformation*, or *Poisson transformation* if it preserves the [[Symplectic Form|symplectic forms]], i.e.,
$
\Xi(\pmb{D}f(z) \cdot z_1, \pmb{D}f(z)\cdot z_2)) = \Omega(z_1, z_2)
$
where $\pmb{D}f(z)$ denotes the derivative of $f(z)$, and $\pmb{D}f(z)\cdot z_1$ means $\pmb{D}f(z)$ applied to $z_1$ as a [[linear map]].
In [[Pull-Back and Push-Forward|pull-back notation]], this reads:
$
f^* \Xi = \Omega
$
## Motivation
Consider [[Hamilton's Equations]]:
$
\begin{align}
\dot{q}^i &= \frac{\partial H}{\partial p_i}\\
\dot{p}_i &= -\frac{\partial H}{\partial q^i}
\end{align}
$
and a [[map]] from the [[phase space]] $Z$ to itself: $f:Z \rightarrow Z$, written as:
$
(\tilde{p},\tilde{q}) = \phi(p, q)
$
or equivalently $\tilde{z} = \phi(z)$, where $z(t) = (q(t). p(t))$ satisfies Hamilton's equations above, i.e.,
$
\begin{align}
\dot{z} = X_H(z) = \Omega^\sharp \pmb{\text{d}}H(z)
\end{align}
$
where $X_H$ denotes the [[Hamiltonian Vector Field]] and $\Omega^\sharp: Z^* \rightarrow Z$ is the [[Symplectic Structure#Associated Linear Maps|associated linear map]] of the [[Symplectic Form]]. Its matrix has canonical form $\mathbb{J}$ (the [[Symplectic Matrix]]), and we denote its entries for now by $B^{JK}$. Using the chain rule:
$
\dot{\tilde{z}}^I = \frac{\partial f^I}{\partial z^J} \dot{z}^J \equiv A^{I}_{\,J} \dot{z}^J
$
But we have:
$
\dot{z}^J = B^{JK} \frac{\partial H}{\partial z^K}
$
and
$
\frac{\partial H}{\partial \tilde{z}^K} = A^{L}_{\,\,K} \frac{\partial H}{\partial z^L}
$
therefore we end up with:
$
\dot{\tilde{z}}^I = A^{I}_{\,\,J} B^{JK} A^{L}_{\,\,K} \frac{\partial H}{\partial \tilde{z}^L}
$
For these equations to be Hamiltonian, we require:
$
A^{I}_{\,\,J} B^{JK} A^{L}_{\,\,K} = B^{IL}
$
or equivalently
$
A \mathbb{J} A^T = \mathbb{J}
$
That is, these matrices belong to the [[Symplectic Group|symplectic group]].