# Definition
The $2n \times 2n$ symplectic matrix is defined by:
$
\mathbb{J} \equiv \begin{pmatrix}
\mathbb{0} & \mathbb{1} \\
-\mathbb{1} & \mathbb{0}
\end{pmatrix}
$
where $\mathbb{1}$ is the $n\times n$ identity matrix, $\mathbb{0}$ is the $n \times n$ zero [[matrix]].