# Definition
Given a [[Lie algebra]] $\mathfrak{g}$, let $\{X_i\}_{i=1\ldots n}$ be a [[basis]]. Then the [[commutator|commutation]] relations take the form:
$
[X_i, X_j] = \sum_{k=1}^n c_{ij}^{\,\,\,\,k}X_k
$
The $c_{ij}^{\,\,\,\,k}$ are the structure constants. "Structure constants" is a misnomer since they are basis dependent.
## As components of a Tensor
Define a (2,1) tensor $T$ on the Lie algebra $\mathfrak{g}$ by:
$
T(X, Y, f) \equiv f([X,Y]) \quad \forall X,Y \in \mathfrak{g}, \,\, f \in \mathfrak{g}^*
$
Then, let $\{f^k\}_{k=1,\ldots,n}$ be the basis dual to $\{X_i\}_{i=1\ldots n}$, T has components:
$
T_{ij}^{\,\,\,\,k} = f^k([X_i,X_j]) = f^k(c_{ij}^{\,\,\,\,l}X_l) = f^k(X_l)c_{ij}^{\,\,\,\,l} = \delta^k_{\,\,l} c_{ij}^{\,\,\,\,l} = c_{ij}^{\,\,\,\,k}
$
# Lie Algebra Isomorphisms
Sometimes, to prove that two [[Lie Algebra|Lie algebras]] are [[Lie Algebra Isomorphism|isomorphic]], the easiest way is to make a smart choice of bases. Let $\{X_i\}_{i=1\ldots n}$ be a [[basis]] for $\mathfrak{g}$ and $\{Y_i\}_{i=1\ldots n}$ a basis for $\mathfrak{h}$. Then the commutation relations take the form:
$
\begin{align}
[X_i, X_j] &= \sum_{k=1}^n c_{ij}^{\,\,\,\,k}X_k\\
[Y_i, Y_j] &= \sum_{k=1}^n d_{ij}^{\,\,\,\,k}Y_k
\end{align}
$
If we pick our basis intelligently so that $c_{ij}^{\,\,\,\,k} = d_{ij}^{\,\,\,\,k} \,\, \forall \,\, i, j, k$, then the map:
$
\begin{align}
\phi: \quad \mathfrak{g} &\rightarrow \mathfrak{h}\\
v^iX_i &\mapsto v^iY_i
\end{align}
$
is an isomorphism.