# Some Definitions
> **Transpose**
> The transpose of a matrix is defined by:
> $(A^T)_{ij} = A_{ji}$
> **Inverse**
> The *inverse* of a square matrix is defined by:
> $A^{-1} A = A A^{-1} = I$
> When the inverse exists it is unique.
^b970df
# Properties
$
\begin{align}
(AB)^T &= B^T A^T, \\
(AB)^{-1} &= B^{-1} A^{-1}, \\
\det(AB) &= \det(A) \det(B), \\
\det(B^{-1} A B) &= \det(A), \\
\text{tr}(B^{-1} A B) &= \text{tr}(A),\\
\det(A^T) &= \det(A),\\
{\text{eigenvalues of} \, A^T} &= {\text{eigenvalues of} \, A} , \\
\det(A) &= \lambda_1 \lambda_2 \ldots \lambda_n \\
\text{tr}(A) &= \lambda_1 +\lambda_2 +\ldots +\lambda_n
\end{align}
$