# Definition
The [[Special Orthogonal Group]] in 3 dimensions, $SO(3)$, is the [[group]] of all [[Rotation|rotations]] in 3 spatial dimensions. It is a [[Lie group]] of [[dimension]] 3, and the [[Identity Component|identity component]] of the [[Orthogonal Group in 3 Dimensions|orthogonal group]] $O(3)$.
The [[Special Unitary Group in 2 Dimensions|special unitary group]] $SU(2)$ is the [[Relationship Between SO(3) and SU(2)|double cover]] of $SO(3)$.
# Elements
We can write the group [[Group Element|elements]] as follows, where the subscript corresponds to the axis of rotation:
$
\begin{align}
R_x(\theta) &\equiv \begin{pmatrix}
1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta
\end{pmatrix}\\
R_{y}(\theta) &\equiv\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
R_{z}(\theta) &\equiv\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{align}
$
A general element in $SO(3)$ can be written in two ways. First, we use Euler angles. To rotate one orthonormal [[basis]] into another of the same orientation, we rotate by an angle $\phi$ around the z-axis, then an angle $\theta$ around the *new* x-axis, then an angle $\psi$ around the *new* z-axis. This finally gives the general form for $R \in SO(3)$
$
\left(\begin{array}{ccc}
\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi & \cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi & \sin \psi \sin \theta \\
-\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi & -\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi & \cos \psi \sin \theta \\
\sin \theta \sin \phi & -\sin \theta \cos \phi & \cos \theta
\end{array}\right)
\tag{1} \label{eq:rot_11}
$
Alternatively, we can consider rotations by an angle $\theta$ about an arbitrary axis described by a *unit vector* $\pmb{n} = (n_x, n_y, n_z)$, and we get the general form:
$
\left(\begin{array}{ccc}
n_{x}^{2}(1-\cos \theta)+\cos \theta & n_{x} n_{y}(1-\cos \theta)-n_{z} \sin \theta & n_{x} n_{z}(1-\cos \theta)+n_{y} \sin \theta \\
n_{y} n_{x}(1-\cos \theta)+n_{z} \sin \theta & n_{y}^{2}(1-\cos \theta)+\cos \theta & n_{y} n_{z}(1-\cos \theta)-n_{x} \sin \theta \\
n_{z} n_{x}(1-\cos \theta)-n_{y} \sin \theta & n_{z} n_{y}(1-\cos \theta)+n_{x} \sin \theta & n_{z}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right)
\tag{2} \label{eq:rot_22}
$
# Infinitesimal Generators
The elements of the [[Lie Algebra]] of $SO(3)$, denoted $\mathfrak{so}(3)$, are the infinitesimal generators shown below:
$
\begin{aligned}
&\left.L_{x} \equiv \frac{d R_{x}}{d \theta}\right|_{\theta=0}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \\
&L_{y}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
&L_{z}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$
Observe that, up to a factor of $i$, these are just representations of the [[angular momentum|angular momentum]] operators.
Observe that
$
\text{span}\{L_x, L_y, L_z\} = \{\text{anti-symmetric 3$\times$3 matrices}\} \equiv \mathfrak{so}(3)
$
where $\mathfrak{so}(3)$ denotes the [[Lie Algebra|Lie algebra]] of $SO(3)$.
Note that we can write an arbitrary $3\times3$ antisymmetric matrix, i.e., an arbitrary generator of rotations, as
$
\omega=\left(\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right) = \omega_x L_x + \omega_y L_y + \omega_z L_z
$
Now multiply $\omega$ by an arbitrary vector $\pmb{r} = (x,y,z)$ and we get:
$
\omega \pmb{r} = \pmb{\omega} \times \pmb{r}
$
where we have defined the [[Pseudovector|pseudovector]] $\pmb{\omega} = (\omega_x, \omega_y, \omega_z)$ associated with the infinitesimal generator $\omega$.
Note that:
$
\omega \pmb{\omega} = \pmb{\omega}\times\pmb{\omega} = \pmb{0}
$
and we can conclude that, since $\pmb{\omega}$ is unchanged by the rotation, then it must lie along the axis of rotation. It is really just the familiar [[angular velocity]] [[vector]].
Finally, note that:
$
\begin{align}
[L_x, L_y] &= L_z,\\
[L_y, L_z] &= L_x,\\
[L_z, L_x] &= L_y
\end{align}
$
where $[\cdot,\cdot]$ is the [[commutator]]. This is one of the defining relations of a [[Lie Algebra]], i.e., closure under the commutator (Lie bracket).
# Lie Algebra
The Lie algebra of $SO(3)$, denoted $\mathfrak{so}(3)$, is the set of all $3\times3$ antisymmetric matrices, as noted in [[Special Orthogonal Group#Lie Algebra|here]]. We can pick a basis of this space:
$
\begin{aligned}
&L_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \\
&L_{y}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
&L_{z}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$
which are just the generators discussed [[#Infinitesimal Generators|above]].
Note that, labeling the generators by number ($x = 1, y = 2, z = 3$) we have:
$
(L_i)_{jk} = -\epsilon_{ijk}
$
and we can also rewrite the commutation relations noted above as:
$
[L_i, L_j] = \sum_{k = 1}^3 \epsilon_{ijk} L_k
$
An arbitrary element in $\mathfrak{so}(3)$ can be written as:
$
X =
\begin{pmatrix}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{pmatrix}
= x L_x + y L_y + z L_z
$
so we can write $[X]_{\{L_i\}} = (x,y,z)$. Via direct multiplication, one can show that, given $\pmb{v} = (v_x, v_y, v_z)$,
$
X \pmb{v} = [X] \times v
$
so that $X [X] = 0$ This implies that:
$
e^{t X}[X] = I [X] + tX [X] + \frac{1}{2} t^2 X^2[X] + \ldots \implies e^{tX}[X] = [X],
$
i.e., $e^{tX}$ is a rotation around the $[X]$ axis since it leaves $[X]$ invariant. Taking $[X]$ to be a unit vector $[X] = (n_x, n_y, n_z)$, and relabeling $t \rightarrow \theta$, we end up with:
$
\left(\begin{array}{ccc}
n_{x}^{2}(1-\cos \theta)+\cos \theta & n_{x} n_{y}(1-\cos \theta)-n_{z} \sin \theta & n_{x} n_{z}(1-\cos \theta)+n_{y} \sin \theta \\
n_{y} n_{x}(1-\cos \theta)+n_{z} \sin \theta & n_{y}^{2}(1-\cos \theta)+\cos \theta & n_{y} n_{z}(1-\cos \theta)-n_{x} \sin \theta \\
n_{z} n_{x}(1-\cos \theta)-n_{y} \sin \theta & n_{z} n_{y}(1-\cos \theta)+n_{x} \sin \theta & n_{z}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right)
$
which is just Eq. $\eqref{eq:rot_11}$ above.
## The Commutator and the Cross Product
Given two matrices $X, Y \in \mathfrak{so}(3)$, and the basis $\mathcal{B} = \{L_i\}$, we have the following relation:
$
[[X,Y]]_\mathcal{B} = [X]_\mathcal{B} \times [Y]_\mathcal{B}
$
The proof is straightforward via direct computation.
# In Physics
$SO(3)$ has a plethora of applications in physics.
Note that, in physics, we [[Physicists' Definition of Lie Algebras|would define the generators Hermitian]], $L'_i \equiv i L_i$ so that we end up with:
$
[L'_i, L'_j] = i\sum_{k = 1}^3 \epsilon_{ijk} L'_k
$
which is the commutation relation we're most used to.