# Definition
The [[Special Linear Group]] $SL(2,\mathbb{C})$ is the group of all complex $2\times2$ [[matrix|matrices]] with unit [[determinant]]. It is the group of [[Lorentz transformation|Lorentz transformations]] on [[spin-half|spin-1/2]] particles.
# Elements
The most general element of $SL(2, \mathbb{C})$ can be written as:
$
A=\left(\begin{array}{l}
a & b \\
c & d
\end{array}\right) \quad a, b, c, d \in \mathbb{C}, a d-b c=1
$
This means the group has complex [[dimension]] 3 or real dimension 6.
One can show that a boost in $SL(2,\mathbb{C})$ can be written as:
$
\tilde{L}=\left(\begin{array}{cc}
\cosh \frac{u}{2}+\frac{u_{z}}{u} \sinh \frac{u}{2} & -\frac{1}{u}\left(u_{x}-i u_{y}\right) \sinh \frac{u}{2} \\
-\frac{1}{u}\left(u_{x}+i u_{y}\right) \sinh \frac{u}{2} & \cosh \frac{u}{2}-\frac{u_{z}}{u} \sinh \frac{u}{2}
\end{array}\right), \quad \mathbf{u} \in \mathbb{R}^{3}
$
Moreover, any $A$ in $SL(2,\mathbb{C})$ can be decomposed as $A = \tilde{L} \tilde{R}$ where $\tilde{L}$ is given above and $\tilde{R} \in SU(2)$. The parameters here are the same used for $SO
(3,1)_o$
# Lie Algebra
%%
The [[Lie Algebra]] of $SL(2,\mathbb{C})$ is $H_2(\mathbb{C})$, the vector space of all [[Hermitian Operator|Hermitian]] $2\times 2$ matrices.
%%
$\mathfrak{sl}(2, \mathbb{C})_\mathbb{R}$ is defined to be the [[Lie algebra]] of $SL(2, \mathbb{C})$ when viewed as a *real* vector space. As defined above, $SL(2, \mathbb{C})$ is the set of all complex $2\times2$ [[matrix|matrices]] with unit [[determinant]], making $\mathfrak{sl}(2, \mathbb{C})_\mathbb{R}$ the set of all [[trace|traceless]] $2\times2$ complex matrices.
This gives us 4-1 complex dimensions, i.e., 6 real dimensions, the same [[dimension|dimensionality]] as $SL(2,\mathbb{C})$ as one would expect. We can take as a basis (i.e., the generators):
$
\begin{array}{cc}
&S_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), \quad &S_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad &S_{3}=\frac{1}{2}\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) \\
&\tilde{K}_{1} \equiv \frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad &\tilde{K}_{2} \equiv \frac{1}{2}\left(\begin{array}{cc}
0 &-i \\
i & 0
\end{array}\right), \quad &\tilde{K}_{3} \equiv \frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{array}
$
where $\tilde{K}_i = i S_i$. We also have thee commutation relations:
$
\begin{aligned}
\left[S_{i}, S_{j}\right] &=\sum_{k=1}^{3} \epsilon_{i j k} S_{k} \\
\left[S_{i}, \tilde{K}_{j}\right] &=\sum_{k=1}^{3} \epsilon_{i j k} \tilde{K}_{k} \\
\left[\tilde{K}_{i}, \tilde{K}_{j}\right] &=-\sum_{k=1}^{3} \epsilon_{i j k} S_{k}
\end{aligned}
$
which are identical to the $\mathfrak{so}(3,1)$ commutation relations.