# Definition
A sesquilinear form $\braket{.|.}$ is a [[Quadratic Forms on Vector Spaces|quadratic form]] on a [[vector space]] $V$
$
\begin{align}
\braket{.|.}: &V\times V \rightarrow \mathbb{F} , \\
&(\pmb{x}, \pmb{y}) \mapsto \braket{\pmb{x}|\pmb{y}}
\end{align}
$
where $\mathbb{F}$ is the field over which $V$ is defined.
It has the following properties (in physicists' convention)
1. *Linearity in its second argument:* $\braket{\pmb{z}|c\pmb{x}+\pmb{y}} = c\braket{\pmb{z}|\pmb{x}} + \braket{\pmb{z}|\pmb{y}}$
2. *Antilinearity in its first argument:* $\braket{c\pmb{x}+\pmb{y}|\pmb{z}} = c^* \braket{\pmb{x}|\pmb{z}} + \braket{\pmb{y}|\pmb{z}}$