# Definition
The [[Restricted Lorentz Group]] in 4 dimensions $SO(3,1)_o$ is the group of [[boost|boosts]] and [[Rotation|rotations]] which preserve the orientation of space and time (i.e. the restricted [[Lorentz Transformation|Lorentz transformations]]).
It is defined by elements of $O(3,1)$ which additionally have unit determinant and $A_{44} > 0$, where we use the metric signature $(+++-)$ so that time is the fourth component.
# Elements
The most familiar [[group element|element]] of $SO(3,1)_o$ is:
$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \gamma & -\beta \gamma \\
0 & 0 & -\beta \gamma & \gamma
\end{array}\right)-1<\beta<1, \gamma \equiv \frac{1}{\sqrt{1-\beta^{2}}}
$
which can be interpreted [[Active and Passive Transformations|passively]] as a [[boost]] to a new reference frame that is unrotated but moving with a velocity $\beta$ with respect to the old reference frame. We can rewrite this as:
$
L=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cosh u & -\sinh u \\
0 & 0 & -\sinh u & \cosh u
\end{array}\right), \quad u \in \mathbb{R}
$
where $\tanh u = \beta$ and $u$ is the rapidity.
An arbitrary Lorentz transformation takes the form:
$
L=\left(\begin{array}{cccc}
\frac{\beta_{x}^{2}(\gamma-1)}{\beta^{2}}+1 & \frac{\beta_{x} \beta_{y}(\gamma-1)}{\beta^{2}} & \frac{\beta_{x} \beta_{z}(\gamma-1)}{\beta^{2}} & -\beta_{x} \gamma \\
\frac{\beta_{y} \beta_{x}(\gamma-1)}{\beta^{2}} & \frac{\beta_{y}^{2}(\gamma-1)}{\beta^{2}}+1 & \frac{\beta_{y} \beta_{z}(\gamma-1)}{\beta^{2}} & -\beta_{y} \gamma \\
\frac{\beta_{z} \beta_{x}(\gamma-1)}{\beta^{2}} & \frac{\beta_{z} \beta_{y}(\gamma-1)}{\beta^{2}} & \frac{\beta_{z}^{2}(\gamma-1)}{\beta^{2}}+1 & -\beta_{z} \gamma \\
-\beta_{x} \gamma & -\beta_{y} \gamma & -\beta_{z} \gamma & \gamma
\end{array}\right)
$
or generalizing the rapidity to
$
\pmb{\beta} = \frac{\tanh u}{u} \pmb{u}
$
then we get:
$
L=\left(\begin{array}{cccc}
\frac{u_{x}^{2}(\cosh u-1)}{u^{2}}+1 & \frac{u_{x} u_{y}(\cosh u-1)}{u^{2}} & \frac{u_{x} u_{z}(\cosh u-1)}{u^{2}} & -\frac{u_{x}}{u} \sinh u \\
\frac{u_{y} u_{x}(\cosh u-1)}{u^{2}} & \frac{u_{y}^{2}(\cosh u-1)}{u^{2}}+1 & \frac{u_{y} u_{z}(\cosh u-1)}{u^{2}} & -\frac{u_{y}}{u} \sinh u \\
\frac{u_{z} u_{x}(\cosh u-1)}{u^{2}} & \frac{u_{z} u_{y}(\cosh u-1)}{u^{2}} & \frac{u_{z}^{2}(\cosh u-1)}{u^{2}}+1&-\frac{u_{z}}{u} \sinh u \\
-\frac{u_{x}}{u} \sinh u & -\frac{u_{y}}{u} \sinh u & -\frac{u_{z}}{u} \sinh u & \cosh u
\end{array}\right)
$
Note that the set of [[boost|boosts]] is not closed under [[matrix]] multiplication, so it does not form a [[subgroup]]. However, as we already know, [[Rotation|rotations]] *are* closed under matrix multiplication, so they do form a subgroup. In fact, $SO(3) \subset SO(3,1)_o$.
Moreover, any [[Group Element|element]] in $A \in SO(3,1)$ can be decomposed as a rotation and a boost as follows:
$
A = L R'
$
where
$
R' = \begin{pmatrix}
R &0\\
0& 1
\end{pmatrix}
$
such that $R \in SO(3)$.
# Lie Algebra
Recalling that $\mathfrak{so}(3,1) = \mathfrak{o}(3,1)$ and from [[Lorentz Group#Lie Algebra mathfrak o n-1 1|this discussion]], we know that an arbitrary element can be written as:
$
\begin{pmatrix}
X' & \pmb{a}\\
\pmb{a}& 0
\end{pmatrix}, \quad X' \in \mathfrak{so}(3), a \in \mathbb{R}^3
$
Then we can write down the following six generators:
$
\tilde{L}_i \equiv \begin{pmatrix}
L_i & \pmb{0} \\
\pmb{0} & 0
\end{pmatrix}
$
$
K_{1} \equiv\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \quad K_{2} \equiv\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right), K_{3} \equiv\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$
where the $L_i$ are the angular momentum matrices described [[Special Orthogonal Group in 3 Dimensions#Lie Algebra|here]].
Observe the following [[commutator|commutation]] relations:
$
\begin{aligned}
&{\left[\tilde{L}_{i}, \tilde{L}_{j}\right]=\sum_{k=1}^{3} \epsilon_{i j k} \tilde{L}_{k}} \\
&{\left[\tilde{L}_{i}, K_{j}\right]=\sum_{k=1}^{3} \epsilon_{i j k} K_{k}} \\
&{\left[K_{i}, K_{j}\right]=-\sum_{k=1}^{3} \epsilon_{i j k} \tilde{L}_{k} .}
\end{aligned}
$
The $K_i$ can be interpreted as generating boosts along their axes. The last commutation relation means that, if we perform boost 1 then boost 2 (along different axes) or perform boost 2 then boost 1, the different between these 2 situations is a *[[rotation]]*.
By the [[Baker-Campbell-Hausdorff formula]], one can conclude that the product of two boosts is not necessarily a boost (it is generally a combination of boosts and rotations).