# Definition
The [[special unitary group in 2 dimensions]] $SU(2)$ is the double cover of the [[special orthogonal group in 3 dimensions]] $SO(3)$.
This means that there is a two-to-one (double) and onto (cover) [[group homomorphism|homomorphism]] from the former to the latter.
Moreover, the [[Lie algebra|Lie algebras]] $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$ are [[Lie Algebra Isomorphism|isomorphic]], $\mathfrak{su}(2) \cong \mathfrak{so}(3)$.
# Derivation
## Preliminaries
Recall that the [[Lie algebra]] of $SU(2)$, denoted $\mathfrak{su}(2)$, is the vector space of all $2\times2$ traceless anti-[[Hermitian Operator|Hermitian matrices]], as discussed [[Special Unitary Group in 2 Dimensions#Infinitesimal Generators and Lie Algebra|here]].
An arbitrary element $X \in \mathfrak{su}(2)$ can be written as:
$
X = x S_x + y S_y + z S_z
$
where
$
S_\alpha \equiv -\frac{i}{2} \sigma_\alpha
$
and $\sigma_\alpha$ are the 3 [[Pauli matrices]].
Thus, in this basis $\mathcal{B} = \{S_x, S_y, S_z\}$, the column vector corresponding to $X
$ is:
$
[X] = \begin{pmatrix}
x \\ y \\ z
\end{pmatrix}
$
and observe
$
\det(X) = \frac{1}{4}(x^2 + y^2 + z^2) = \frac{1}{4} \braket{[X], [X]} = \frac{1}{4} ||[X]||^2
$
so that the determinant of $X \in \mathfrak{su}(2)$ is proportional to the [[Euclidean norm]] of $[X] \in \mathbb{R}^3$.
## Action of $SU(2)$
Now let $A \in SU(2)$ and $X \in \mathfrak{su}(2)$
$
\begin{align}
A &= \left(\begin{array}{rr}
\alpha & \beta \\
-\beta^* & \alpha^*
\end{array}\right) \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1\\
X &= \frac{1}{2} \begin{pmatrix}
-i z & -y - i x \\ y - i x & i z
\end{pmatrix} \quad x,y,z \in \mathbb{R}
\end{align}
\tag{1}
$
Computing $A X A^\dagger$ using Mathematica, it is trivial to see that it is anti-Hermitian and traceless, i.e., $A X A^\dagger \in \mathfrak{su}(2)$. Note also that:
$
A (X + Y) A^\dagger = A X A^\dagger + A Y A^\dagger
$
so that the map:
$
\rho: A \mapsto A X A^\dagger
$
is actually a [[linear operator]] on $\mathfrak{su}(2)$. It can be represented in the basis $\mathcal{B} = \{S_x, S_y, S_z\}$ by a $3\times3$ matrix which we'll denote by $\rho(A)$
$
[A X A^\dagger] = \rho(A) [X]
$
also observe that:
$
||\rho(A)[X]||^2 = ||[A X A^\dagger]||^2 = 4 \det (A X A^\dagger) = 4 \det(X) = ||[X]||^2
$
so that:
$
\braket{\rho(A)[X]|\rho(A)[X]} = \braket{[X]|[X]}
$
and $\rho(A)$ preserves the norm of $[X]$ and is thus an [[Isometry Group|isometry]]. Therefore, since we are dealing with a [[Euclidean norm]] (i.e. an [[inner product]] on a real [[vector space]]), we conclude that $\rho(A) \in O(3)$.
## Explicit form for $\rho(A)$
Using the forms of $A$ and $X$ mentioned [[#Action of SU 2|above]], we have:
$
A X A^\dagger =
\left(
\begin{array}{cc}
-\frac{1}{2} i \left(\alpha ^* (\alpha z+\beta (x+i y))+\beta ^* (\alpha x-i \alpha y-\beta z)\right) & \frac{1}{2} i \left(x \left(\beta ^2-\alpha ^2\right)+i y \left(\alpha ^2+\beta ^2\right)+2 \alpha \beta z\right) \\
\frac{1}{2} \left(\left(\alpha ^*\right)^2 (y-i x)+\left(\beta ^*\right)^2 (y+i x)+2 i z \alpha ^* \beta ^*\right) & \frac{1}{2} i \left(\alpha ^* (\alpha z+\beta (x+i y))+\beta ^* (\alpha x-i \alpha y-\beta z)\right) \\
\end{array}
\right)
$
Now let $\alpha = a + ib$ and $\beta = c + id$
$
\frac{1}{2} \left(
\begin{array}{cc}
-i z_a & -y_a -i x_a \\
+y_a - i x_a & +i z_a \\
\end{array}
\right)
$
Where we have defined
$
\begin{align}
x_a &= a^2 x+2 a b y-2 a c z-b^2 x+2 b d z-c^2 x+2 c d y+d^2 x\\
y_a &= a^2 y-2 a b x+2 a d z-b^2 y+2 b c z+c^2 y+2 c d x-d^2 y, \\
z_a &= z \left(a^2+b^2-c^2-d^2\right)+2 (a c x-a d y+b c y+b d x),
\end{align}
$
so that we can write a column vector corresponding to $A X A^\dagger$ in the $\mathcal{B} = \{S_x, S_y, S_z\}$ basis as:
$
[A X A^\dagger] = \begin{pmatrix}
x_a \\y_a\\z_a
\end{pmatrix}
$
Now we can work on finding $\rho(A)$, which we have previously defined by:
$
\rho(A) [X] = [A X A^\dagger]
$
Solving this equation via Mathematica, we compute the matrix elements of $\rho(A)$:
$
\begin{align}
\rho_{11} &= a^2 - b^2 - c^2 + d^2,\\
\rho_{12} &= 2(ab + cd),\\
\rho_{13} &= 2(-ac + bd)\\
\rho_{21} &= 2 (c d-a b)\\
\rho_{22} &= a^2-b^2+c^2-d^2\\
\rho_{23} &= 2 (a d+b c)\\
\rho_{31} &= 2 (a c+ b d) \\
\rho_{32} &= 2 (b c- a d)\\
\rho_{33} &= \left(a^2+b^2-c^2-d^2\right)
\end{align}
$
Parameterizing this as:
$
\begin{align}
a &= \cos\theta/2 ,\\
b &= - n_z \sin\theta/2,\\
c &= - n_y \sin\theta/2,\\
d &= - n_x \sin\theta/2\\
\end{align}
$
we get:
$
\left(\begin{array}{ccc}
n_{x}^{2}(1-\cos \theta)+\cos \theta & n_{x} n_{y}(1-\cos \theta)-n_{z} \sin \theta & n_{x} n_{z}(1-\cos \theta)+n_{y} \sin \theta \\
n_{y} n_{x}(1-\cos \theta)+n_{z} \sin \theta & n_{y}^{2}(1-\cos \theta)+\cos \theta & n_{y} n_{z}(1-\cos \theta)-n_{x} \sin \theta \\
n_{z} n_{x}(1-\cos \theta)-n_{y} \sin \theta & n_{z} n_{y}(1-\cos \theta)+n_{x} \sin \theta & n_{z}^{2}(1-\cos \theta)+\cos \theta
\end{array}\right)
$
where is one of the [[Special Orthogonal Group in 3 Dimensions#Elements|standard forms]] of SO(3) matrices, proving that $\rho(A) \in SO(3)$.
## The Homomorphism
So far, we have a map
$
\begin{align}
\rho: SU(2) &\rightarrow SO(3)\\
A &\mapsto \rho(A)
\end{align}
$
Recall the action of $A \in SU(2)$ on $X \in \mathfrak{su}(2)$:
$
X \mapsto A X A^\dagger
$
and the action of $\rho(A) \in SO(3)$ on $X$ represented in the $\mathcal{B} = \{S_x, S_y, S_z\}$ basis:
$
[X] \mapsto \rho(A) [X]
$
Now observe:
$
\rho(AB)[X] = [ABX(AB)^\dagger] = [ABXB^\dagger A^\dagger] = \rho(A)[BXB^\dagger] = \rho(A)\rho(B)[X]
$
and we conclude:
$
\rho(AB) = \rho(A)\rho(B),
$
i.e.,
$
\begin{align}
\rho: SU(2) &\rightarrow SO(3)\\
A &\mapsto \rho(A)
\end{align}
$
is a homomorphism!
In fact, it is a homomorphism from $SU(2)$ [[Types of Maps|onto]] $SO(3)$, but it is *not* one-to-one, i.e., it is not a [[group isomorphism]].
The [[Kernel of a Homomorphism|kernel]] of $\rho$ is $\{I,-I\}$. Note that, from the definition of $\rho$, $\rho(A) = \rho(-A) \forall A \in SU(2)$. Thus, for every rotation $R \in SO(3)$, there exists *two* matrices in $SU(2)$ which [[map]] to $R$ under $\rho$.
In conclusion, we say $SU(2)$ is the *double cover* of $SO(3)$, since there is a two-to-one (double) and onto (cover) homomorphism from the former to the latter.
# The Induced Lie Algebra Homomorphism
We have a *continuous* homomorphism $\rho: SU(2) \rightarrow SO(3)$ defined by the equation
$
[A X A^\dagger] = \rho(A) [X]
$
where $A \in SU(2)$ and $X \in \mathfrak{su}(2)$ in the $\mathcal{B} = \{S_x, S_y, S_z\}$ [[basis]].
We thus have an [[Induced Lie Algebra Homomorphism]] $\phi: \mathfrak{su}(2) \rightarrow \mathfrak{so}(3)$ defined by:
$
\phi(Y) = \frac{d}{dt} \rho(e^{tY})\bigg|_{t=0}
$
Let's work this out. Plugging in $A = e^{tS_i}$ for $i \in \{x,y,z\}$, and an arbitrary $X$ from Eq. $(1)$ we get:
$
\begin{align}
e^{tS_x}X (e^{tS_x})^\dagger &= \frac{1}{2}
\left(
\begin{array}{cc}
-i [y \sin (t)+z \cos (t)] & -[y \cos (t)-z \sin (t)]-i x \\
[y \cos (t)-z \sin (t)]-i x & i [y \sin (t)+z \cos (t)] \\
\end{array}
\right)\\
e^{tS_y}X (e^{tS_y})^\dagger &= \frac{1}{2}
\left(
\begin{array}{cc}
-i [z \cos (t)-x \sin (t)] & -y-i[x \cos (t)+ z \sin (t)] \\
y-i[x \cos (t)+ z \sin (t)] & i [z \cos (t)-x \sin (t)] \\
\end{array}
\right)\\
e^{tS_z}X (e^{tS_z})^\dagger &= \frac{1}{2}
\left(
\begin{array}{cc}
-i z & -[x \sin (t)+y \cos (t)]-i[x \cos (t)-y \sin (t)] \\
[x \sin (t)+y \cos (t)]-i[x \cos (t)-y \sin (t)] &i z \\
\end{array}
\right)
\end{align}
$
So we get:
$
\begin{align}
[e^{tS_x}X (e^{tS_x})^\dagger] &= \begin{pmatrix}
x\\
y \cos (t)-z \sin (t)\\
y \sin (t)+z \cos (t)
\end{pmatrix}\\
[e^{tS_y}X (e^{tS_y})^\dagger] &= \begin{pmatrix}
x \cos(t) + z \sin(t)\\
y\\
z \cos(t) - x \sin(t)
\end{pmatrix}\\
[e^{tS_z}X (e^{tS_z})^\dagger] &= \begin{pmatrix}
x \cos(t) - y \sin(t) \\
x \sin(t) + y \cos(t) \\
z
\end{pmatrix}\\
\end{align}
$
Using the definition of $\rho$
$
[e^{tS_i}X (e^{tS_i})^\dagger] = \rho(e^{tS_i}) [X]
$
we can solve for $\rho(e^{tS_i})$
$
\begin{align}
\rho(e^{tS_x}) &=
\begin{pmatrix}
1 & 0 & 0\\
0 & \cos(t) & -\sin(t)\\
0 & \sin(t) & \cos(t)\\
\end{pmatrix}\\
\rho(e^{tS_y}) &=
\begin{pmatrix}
\cos(t) & 0 & \sin(t)\\
0 & 1 & 0\\
-\sin(t) & 0 & \cos(t)
\end{pmatrix}\\
\rho(e^{tS_z}) &=
\begin{pmatrix}
\cos(t) & -\sin(t) & 0 \\
\sin(t) & \cos(t) & 0 \\
0 & 0 & 1
\end{pmatrix}
\end{align}
$
Note that these are the rotation matrices about the $x,y,z$ axes, an unsurprising result considering the homomorphism between $SU(2)$ and $SO(3)$.
Now we can finally compute:
$
\begin{aligned}
&\phi(S_x) = \frac{d}{dt} \rho(e^{t S_x})\bigg|_{t=0} = \left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) = L_x\\
&\phi(S_y) = \frac{d}{dt} \rho(e^{t S_y})\bigg|_{t=0} =\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) = L_y\\
&\phi(S_z) = \frac{d}{dt} \rho(e^{t S_z})\bigg|_{t=0} =\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) = L_z.
\end{aligned}
$
This proves that $\mathfrak{su}(2) \cong \mathfrak{so}(3)$. Since we have proved $\phi(S_i) = L_i$, and the $S_i$ and $L_i$ have the same [[Structure Constants of a Lie Algebra|structure constants]], then the [[Lie Algebra Homomorphism|homomorphism]] $\phi$ is actually a [[types of maps|bijection]], making it an isomorphism.
# The Adjoint Homomorphism
Note that the homomorphism
$
\begin{align}
\rho: SU(2) &\rightarrow SO(3)\\
A & \mapsto \rho(A)
\end{align}
$
where
$
\begin{align}
\rho(A) [X] &= [A X A^{\dagger}]\\
\rho(A) [X] &= [\text{Ad}_A X]
\end{align}
$
Recalling that the [[Ad Homomorphism 1]] maps $G$ to $\text{Isom}(\mathfrak{g})$ where $\text{Isom}(\mathfrak{g})$ is the [[Isometry group]] of the [[vector space]] $\mathfrak{g}$, and this identification is due to $\text{Ad}_\cdot$ preserving the [[Killing Form]].
$
\text{Ad}: G \rightarrow \text{Isom}(\mathfrak{g})
$
Let's set $G = SU(2)$ and $\mathfrak{g} = \mathfrak{su}(2)$, then we can prove that the [[Killing Form]] is positive definite in the basis $\mathcal{B} = \{S_x, S_y, S_z\}$ (shown below) and we can conclude that $\text{Ad}_A \in \text{Isom}(\mathfrak{su}(2)) \cong O(3)$.
Thus, we have $\text{Ad}: SU(2) \rightarrow O(3)$. Now we need to prove that this map is actually to $SO(3)$, i.e., the [[identity component]] of $O(3)$ and not the entirety of $O(3)$. ==I don't quite know how to do that, honestly.==
After carrying out this calculation, we can conclude that $\rho(A)$ and $\text{Ad}_A$ are identical, and thus the [[Group Homomorphism|homomorphism]] between $SU(2)$ and $SO(3)$ is nothing but the [[Ad Homomorphism 1]].
Finally, corresponding to the [[Ad Homomorphism 1]] is a [[Lie algebra homomoprhism]], which of course is nothing but the [[Ad Homomorphism 1]]: $\text{ad}: \mathfrak{su}(2) \rightarrow \mathfrak{so}(3)$. This must be equal to the $\phi$ isomorphism discussed above, thus, we get:
$
[\text{ad}_{S_i}] = \phi(S_i) = L_i
$
This can be verified explicitly using the commutation relations.
Finally, let's prove the [[Killing Form]] is positive defining the $\{S_i\}$ basis. We have:
$
[\text{ad}_{S_i}] = L_i
$
using the identity:
$
\begin{align}
(L_iL_j)_{kl} &= \sum_m (L_i)_{km} (L_j)_{ml}\\
&= \sum_m \epsilon_{ikm} \epsilon_{jml}\\
&= -\sum_m \epsilon_{mik} \epsilon_{mjl}\\
&= -\delta_{ij} \delta_{kl} + \delta_{il} \delta_{kj}\\
\end{align}
$
we can show that:
$
\begin{align}
K(S_i, S_j) &= -\text{tr}(\text{ad}_{S_i} \text{ad}_{S_j})\\
&= -\text{tr}(L_i L_j)\\
&= \sum_{kl}\left(\delta_{ij} \delta_{kl} - \delta_{il} \delta_{kj}\right)\\
&= 3 \delta _{i,j} -\delta _{1,i} \delta _{1,j}-\delta _{2,i} \delta _{2,j}-\delta _{3,i} \delta _{3,j}
&= 2 \delta _{i,j}
\end{align}
$
So we end up with:
$
[K] = 2 I
$
which is positive-definite. $\square$