# Definition
In an [[Inner Product Space]], an orthogonal basis $\mathcal{B} = \{\pmb{e}_i\}_{i=1\ldots n}$ is one characterized by:
$
\braket{\pmb{e}_i|\pmb{e}_j} = c_{ij}\delta_{ij}
$
where $c_{ii} \neq 0$.
If $c_{ii} = 1 \forall i$ then the basis is called orthonormal.