# Definition
Consider a [[Types of Maps|bijective]] [[map]] $f: X\rightarrow Y$ defined by $f: x \mapsto f(x)$. We can define an *inverse map*, which is also a bijection, by $f^{-1}:Y\rightarrow X$ such that $f^{-1}: f(x) \rightarrow x$.
The maps $f$ and $f^{-1}$ satisfy the following identities
$
\begin{align}
f \circ f^{-1} &= \text{id}_{Y}, \\
f^{-1} \circ f &= \text{id}_{X}
\end{align}
$
where $\text{id}_{.}$ is the [[Identity Map]].