# Definition
A *multiplication table* is a graphical representation of the multiplication of the products of all [[Group Element|elements]] of a given [[group]].
# Example
Consider the group $P(3)$, the permutation group of a set with 3 elements, which has 3! = 6 [[Group Element|elements]]. They can be written as:
$
\begin{align}
e =
\begin{pmatrix}
1 & 2 & 3\\
1 & 2 & 3
\end{pmatrix}, \quad
a =
\begin{pmatrix}
1 & 2 & 3\\
1 & 3 & 2
\end{pmatrix}, \quad
b =
\begin{pmatrix}
1 & 2 & 3\\
3 & 2 & 1
\end{pmatrix}, \\
c =
\begin{pmatrix}
1 & 2 & 3\\
2 & 1 & 3
\end{pmatrix}, \quad
d =
\begin{pmatrix}
1 & 2 & 3\\
3 & 1 & 2
\end{pmatrix}, \quad
f =
\begin{pmatrix}
1 & 2 & 3\\
2 & 3 & 1
\end{pmatrix}, \\
\end{align}
$
The multiplication table has $6^2 = 36$ cells. First, we rewrite these permutations in [[cycle notation|cycle notation]]:
$
\begin{align}
e &= (1)(2)(3) = (),\\
a &= (1)(23) = (23),\\
b &= (2)(13) = (13),\\
c &= (3)(12) = (12),\\
d &= (132),\\
f &= (123),\\
\end{align}
$
Then we multiply them in Mathematica because we're lazy and there's 36 of them. The first 12 are:
![[Pasted image 20210626100356.png]]
Finally we get the multiplication table:
| | $e$ | $a$ | $b$ | $c$ | $d$ | $f$ |
| --- | --- | --- | --- | --- | --- | --- |
| $e$ | $e$ | $a$ | $b$ | $c$ | $d$ | $f$ |
| $a$ | $a$ | $e$ | $d$ | $f$ | $b$ | $c$ |
| $b$ | $b$ | $f$ | $e$ | $d$ | $c$ | $a$ |
| $c$ | $c$ | $d$ | $f$ | $e$ | $a$ | $b$ |
| $d$ | $d$ | $c$ | $a$ | $b$ | $f$ | $e$ |
| $f$ | $f$ | $b$ | $c$ | $a$ | $e$ | $d$ |