# Definition
A *[[group]] [[homomorphism]]* is like a [[Group Isomorphism|group isomorphism]] except it can be *many-to-one* and may only be *[[Types of Maps|into]]*. Like an isomorphism, we still have, for $g, h \in G_1$ and $f:G_1 \rightarrow G_2$,
$ f(g \bullet h) = f(g) * f(h) $
In simpler language, the two groups are homomorphic if there exists a *many-to-one* correspondence between their [[Group Element|elements]]:
$
\begin{align}
a \rightarrow \hat{a},\\
b \rightarrow \hat{b},\\
ab \rightarrow \hat{a}\hat{b},\\
\end{align}
$
where the "unhatted" letters are elements of the first group and the hatted ones are elements of the second group. If the correspondence is *one-to-one*, then it is an [[Group Homomorphism|isomorphism]].
# Properties
Given a homomorphism $f:G_1 \rightarrow G_2$ with identities $e_1$ and $e_2$ respectively. Then:
$
\begin{align}
f(e_1e_1) &= f(e_1).f(e_1) = f(e_1) \\
&\implies f(e_1) = e_2,\\
f(g g^{-1}) &= f(g) f(g^{-1}) = f(e_1) = e_2 \\
&\implies f(g^{-1}) = f(g)^{-1} \quad \forall g \in G_1
\end{align}
$