# Definition
The determinant of a [[square matrix]] is defined by:
$\det(A) = \left(\sum_{j=1}^n a_{ij} a^{ij}\right) \quad \text{for any fixed} \, i $
# Properties
$
\begin{align}
\det(AB) &= \det(A) \det(B), \\
\det(B^{-1} A B) &= \det(A), \\
\det(A^T) &= \det(A),\\
\det(A) &= \lambda_1 \lambda_2 \ldots \lambda_n \\
\end{align}
$
where $\lambda_i$ are the eigenvalues.
Moreover, we also have:
$
\det(e^X) = e^{\text{tr}(X)}
$
where $\text{tr}$ denotes the [[trace]]. This identity is proved [[Trace and Determinant as Homomorphisms|here]].