# Vectors If the vectors $\mathcal{B} = \{\pmb{e}_i, i = 1, \ldots, n\}$ form a [[basis]] of an $n$-[[Dimension|dimensional]] [[vector space]] $V$, then any $\pmb{v} \in V$ can be written as: $ \pmb{v} = \sum_{i = 1}^{n} v^i \pmb{e}_i$ The set of numbers $\{v^i, i = 1, \ldots n\}$ are the *components* of $\pmb{v}$ with respect to this [[basis]]. We can write the vector $\pmb{v}$ as a column vector in this basis, denoted by $[\pmb{v}]_{\mathcal{B}}$, as $ [\pmb{v}]_{\mathcal{B}} = \begin{pmatrix} v^1 \\ v^2 \\ \vdots\\ v^n \end{pmatrix} $ We will often drop the subscript in $[.]_\mathcal{B}$ if the basis is obvious, its purpose is to distinguish components in different bases. Remember that vectors exists *independent of any chosen basis and their column vector expressions depend on the choice of basis*. ## Example Note that, any set of basis vectors in the basis they define will look like [[Standard Basis]]. For example, consider $\mathbb{R}^3$ with the two bases: $ \begin{align} \mathcal{B} &= \{\pmb{e}_1 = (1,0,0), \pmb{e}_2 = (0,1,0), \pmb{e}_3 = (0,0,1)\}, \\ \mathcal{B'} &= \{\pmb{e}'_1 = (1,1,0), \pmb{e}'_2 = (0,1,1), \pmb{e}'_3 = (1,0,1)\} \end{align} $ Observe that: $ [\pmb{e}_1]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad [\pmb{e}_2]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad [\pmb{e}_3]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, $ and $ [\pmb{e}'_1]_{\mathcal{B}'} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad [\pmb{e}'_2]_{\mathcal{B}'} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad [\pmb{e}'_3]_{\mathcal{B}'} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, $ # One-Forms The construction for [[one-form|one-forms]] becomes: $ \tilde{q} = \sum_{j=1}^n q_j \tilde{e}^j $ where $q_j$ are the components and $\tilde{e}^j$ are the [[dual basis]]. # Tensors ^8b9d84 Just like the components of a one-form, the components of a [[tensor]] $\overline{S}$ (e.g. of type $(3,2)$) are its values when it takes [[basis]] vectors and [[basis]] one-form as its arguments. $S^{ijk}_{\,\,\,\,\,lm} = \overline{S}(\tilde{e}^i, \tilde{e}^j, \tilde{e}^k; \pmb{e}_l, \pmb{e}_m)$ Note that the components of a [[tensor]] (and thus, a [[vector]] and a [[one-form]]) in a certain [[basis]] are unique, i.e., no two tensors have the same components in the same basis. # Linear Operators Consider a [[Linear Operator]] $T$ on a finite dimensional space $V$, $\pmb{v} \in V$, and choose a [[basis]] $\mathcal{B} = \{e_i\}_{\{i = 1, \ldots, n\}}$. The action of $T$ is determined by its action on the basis [[vectors]] as follows: $ T(\pmb{v}) = T( \sum_{i = 1}^n v^i e_i) = \sum_{i = 1}^n v^i T(e_i) = \sum_{i, j = 1} v^i T_{i}^{\,j} e_j $ where $ T(e_i) = \sum_{j = 1}^n T_{i}^{\,j} e_j $ the numbers $T_{i}^{\,j}$ are the components of $T$ in the basis $\mathcal{B}$. The [[matrix]] of $T$ in the basis $\mathcal{B}$, $[T]_\mathcal{B}$, just has components $T_{i}^{\,j}$ where the lower index refers to columns and the upper index refers to rows.The action of the operator in a basis takes the form: $ [T(\pmb{v})]_\mathcal{B} = [T]_\mathcal{B} [\pmb{v}]_\mathcal{B} $ Thus, when we pick a basis, we can use the operator to act on vectors via matrix multiplication. # Linear Maps This case of [[linear map|linear maps]] is similar to the linear operator discussed above but the map is no longer an [[endomorphism]]. Let our [[vector space|vector spaces]] be $E$ and $F$ and their [[basis|bases]] $\{e_i\}$ and $\{f_i\}$. We have four cases: 1. $ \begin{align} T: E &\rightarrow F\\ T(e_i) &= T_{\,\,i}^{j} f_j \end{align} $ 2. $ \begin{align} T: E^* &\rightarrow F\\ T(e^i) &= T^{ji} f_j \end{align} $ 3. $ \begin{align} T: E &\rightarrow F^*\\ T(e_i) &= T_{ji} f^j \end{align} $ 4. $ \begin{align} T: E^* &\rightarrow F^*\\ T(e^i) &= T^{\,\,i}_{j} f^j \end{align} $