^^ [[Schutz - 1 - Some Basic Mathematics|1. Some Basic Mathematics]]
<< [[Schutz - 1.5 - Linear Algebra]] |
# The Algebra of Square Matrices
> **Determinant**
> The determinant of a square matrix is defined by:
> $\det(A) = \left(\sum_{j=1}^n a_{ij} a^{ij}\right) \quad \text{for any fixed} \, i $
^9a7405
> **Transpose**
> The transpose of a matrix is defined by:
> $(A^T)_{ij} = A_{ji}$
> **Inverse**
> The *inverse* of a square matrix is defined by:
> $A^{-1} A = A A^{-1} = I$
> When the inverse exists it is unique.
^8fdccb
> **Trace**
> The *trace* of a square matrix is defined by
> $\text{tr}(A) = \sum_{i=1}^n a_{ii}$
> **Non-singular Matrix**
> A matrix $A$ is said to be *non-singular* when its [[Schutz - 1.6 - The Algebra of Square Matrices#^8fdccb|inverse]] exists. This is equivalent to saying that the [[Schutz - 1.6 - The Algebra of Square Matrices#^9a7405|determinant]] is non-zero.
^9ea58f
> **Similarity Transformation**
> A *similarity transformation* of a matrix $A$ by a [[Schutz - 1.6 - The Algebra of Square Matrices#^9ea58f|non-singular]] matrix $B$ is a map $A \mapsto B^{-1} A B$.
## Properties of Operations on Square Matrices
$
\begin{align}
(AB)^T &= B^T A^T, \\
(AB)^{-1} &= B^{-1} A^{-1}, \\
\det(AB) &= \det(A) \det(B), \\
\det(B^{-1} A B) &= \det(A), \\
\text{tr}(B^{-1} A B) &= \text{tr}(A),\\
\det(A^T) &= \det(A),\\
{\text{eigenvalues of} \, A^T} &= {\text{eigenvalues of} \, A} , \\
\det(A) &= \lambda_1 \lambda_2 \ldots \lambda_n \\
\text{tr}(A) &= \lambda_1 +\lambda_2 +\ldots +\lambda_n
\end{align}
$